Polarization dependent fragmentation of ions produced by laser desorption from nanopost arrays.

نویسندگان

  • Jessica A Stolee
  • Akos Vertes
چکیده

Tailored silicon nanopost arrays (NAPA) enable controlled and resonant ion production in laser desorption ionization experiments and have been termed nanophotonic ion sources (Walker et al., J. Phys. Chem. C, 2010, 114, 4835-4840). As the post dimensions are comparable to or smaller than the laser wavelength, near-field effects and localized electromagnetic fields are present in their vicinity. In this contribution, we explore the desorption and ionization mechanism by studying how surface derivatization affects ion yields and fragmentation. We demonstrate that by increasing the laser fluence on derivatized NAPA with less polar surfaces that have decreased interaction energy between the structured silicon substrate and the adsorbate, the spectrum changes from exhibiting primarily molecular ions to showing a growing variety and abundance of fragments. The polarization angle of the laser beam had been shown to dramatically affect the ion yields of adsorbates. For the first time, we report that by rotating the plane of polarization of the desorption laser, the internal energy of the adsorbate can also be modulated resulting in polarization dependent fragmentation. This polarization effect also resulted in selective fragmentation of vitamin B(12). To explore the internal energy of NAPA generated ions, the effect of the post aspect ratios on the laser desorption thresholds and on the internal energy of a preformed ion was studied. Elevated surface temperatures and enhanced near fields in the vicinity of high aspect ratio posts are thought to contribute to desorption and ionization from NAPA. Comparison of the fluence dependence of the internal energies of ions produced from nanoporous silicon and NAPA substrates indicates that surface restructuring or transient melting by the desorption laser is a prerequisite for the former but not for the latter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tailored Silicon Nanopost Arrays for Resonant Nanophotonic Ion Production

Nanostructures that have dimensions commensurate with the wavelength of the electromagnetic radiation exhibit near-field effects and, as optical antennas, can couple laser radiation to the local environment. Laser-induced silicon microcolumn arrays behave as nanophotonic ion sources that can be modulated by rotating the plane of light polarization. However, the limited range of surface morpholo...

متن کامل

Large-Scale Metabolite Analysis of Standards and Human Serum by Laser Desorption Ionization Mass Spectrometry from Silicon Nanopost Arrays.

The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been ...

متن کامل

Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays.

Laser-induced silicon microcolumn arrays (LISMA) were developed as matrix-free substrates for soft laser desorption/ionization mass spectrometry (SLDI-MS). When low-resistivity silicon wafers were irradiated in air, sulfur hexafluoride, or water environment with multiple pulses from a 3 x omega mode-locked Nd:YAG laser, columnar structures were formed on the surface. The radii of curvature of t...

متن کامل

Laser desorption ionization (LDI) silicon nanopost array chips fabricated using deep UV projection lithography and deep reactive ion etching

Deep UV projection lithography (DUV-PL) and deep reactive ion etching (DRIE) processes are used to fabricate silicon nanopost surfaces for laser desorption ionization mass spectrometry (LDI-MS). Described here is a fabrication process that is amenable to mass production of silicon nanopost array (NAPA) devices optimized for laser desorption ionization mass spectrometry of small molecules less t...

متن کامل

Laser-nanostructure interactions for ion production.

Interactions between pulsed laser radiation and nanostructured materials, with dimensions ranging from 1 nm to 500 nm, can result in enhanced desorption and ionization of organic and biomolecular adsorbates. When the critical dimensions of the nanostructures fall below the characteristic lengths for the involved transport processes, novel regimes of ion production are observed. Systems with dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 20  شماره 

صفحات  -

تاریخ انتشار 2011